
July 4, 2025

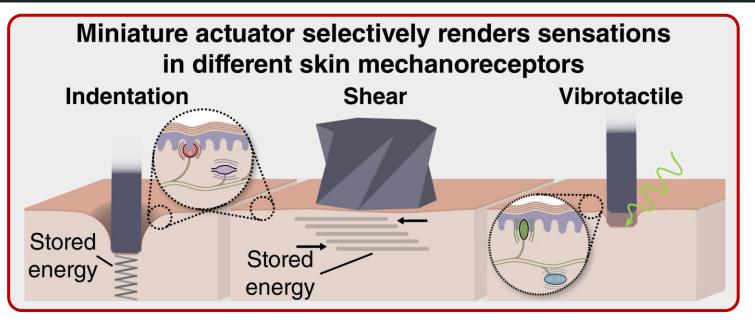
Wearable Mechatronics for Receiving and Transmitting Information Through the Skin

Matthew T. Flavin, Ph.D. mflavin@gatech.edu

Assistant Professor at Georgia Institute of Technology School of Electrical and Computer Engineering

Flavin Neuromachines Lab https://flavinlab.io

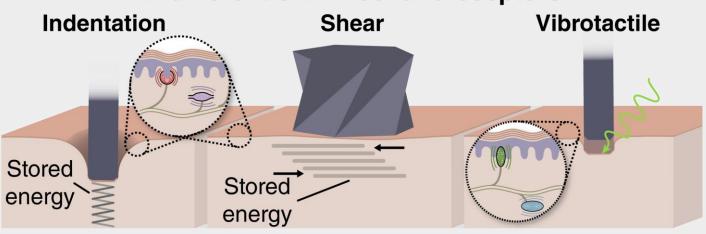
National Institutes of Health

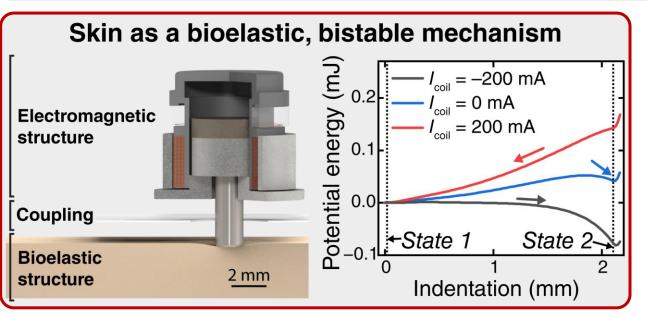

Motivation: Neurological disorders

Developing clinical interventions

Flavin et al. Unpublished

Multimodal somatosensory interfaces



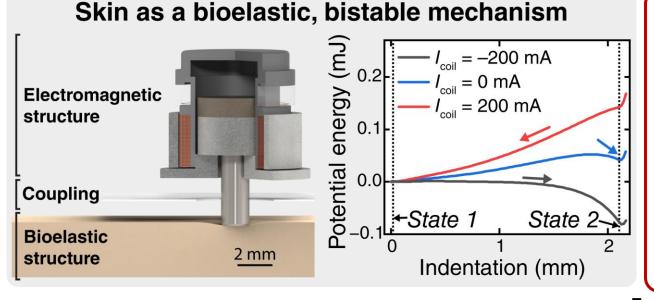

- A rich composition of afferent mechanoreceptors that exist in the skin act collectively to define our physical perception of the world
- We address long-standing challenges in selectively rendering sensations in these afferent channels

Flavin et al. Nature (2024).

Multimodal somatosensory interfaces

Miniature actuator selectively renders sensations in different skin mechanoreceptors

- A rich composition of afferent mechanoreceptors that exist in the skin act collectively to define our physical perception of the world
- We address long-standing challenges in selectively rendering sensations in these afferent channels


Flavin et al. Nature (2024).

Multimodal somatosensory interfaces

Miniature actuator selectively renders sensations in different skin mechanoreceptors Indentation Shear Vibrotactile

- A rich composition of afferent mechanoreceptors that exist in the skin act collectively to define our physical perception of the world
- We address long-standing challenges in selectively rendering sensations in these afferent channels

Flavin et al. Nature (2024).

Ref.	Tethered	Mechanism	Size
This work	No	Bioelastic transducer	Small size, low energy, large force
Leroy et al. <i>Adv.</i> <i>Mater.</i> 32, 2002564	Yes	Electrostatic	Smallest thickness, low-energy, low force
Vechev et al. <i>IEEE</i> <i>VR Conference</i> (2019)	Yes	Electro- magnetic	Large, high energy, low force
Qi et al. <i>Adv. Sci.</i> 10, 2301044.	No	Pneumatic	Large, high energy, high force

Key advances over alternatives

Probing anisotropic, viscoelastic, and plastic features

Small-scale, low-power electromechanical transducer arrays

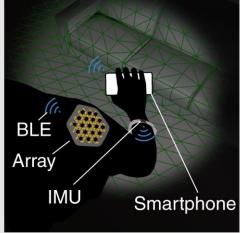
Network of sensors Improvements for and actuators visual impairment

eived

Perce

0 0

0 0


0

3 31

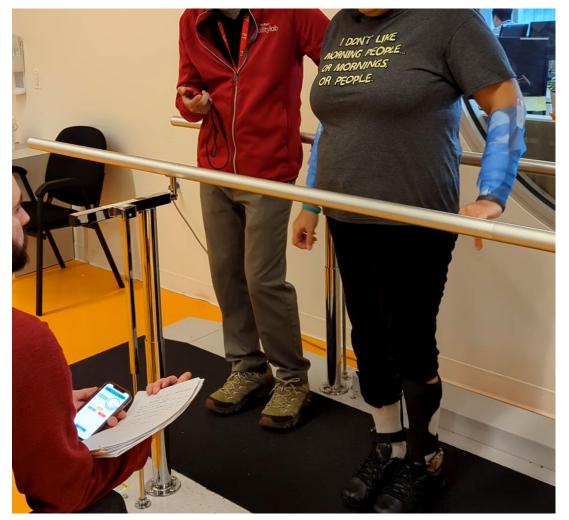
Actual

0

0 0 29

Scene reconstruction and tracking

- Created a small-scale, low-power actuator capable of new interactions with skin
- Demonstrated an array of actuators rendering input from virtual and augmented reality systems
- Improved outcomes for models of visual and proprioceptive impairments

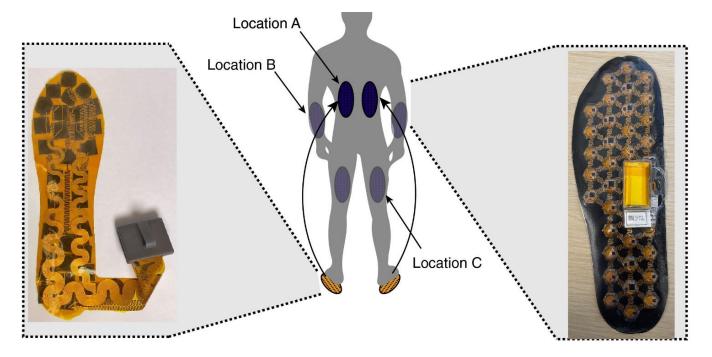

Flavin et al. Nature (2024).

Flavin et al. unpublished.

Shin*, Flavin* et al. Nature (2025).

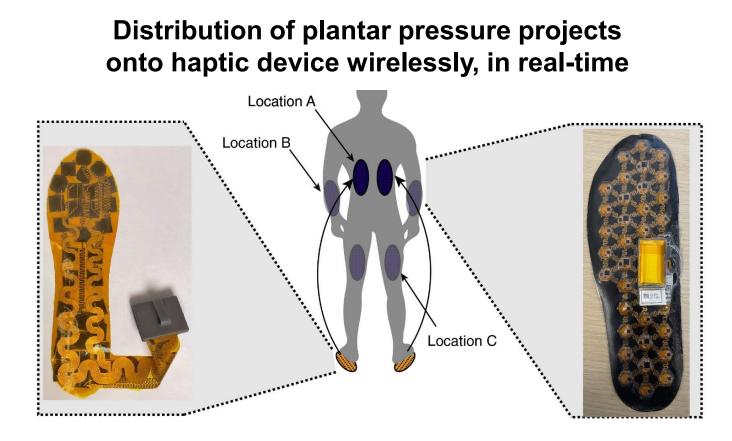
Sensory substitution clinical studies

Loss of plantar sensation leads to dependence on vision for balance


- Loss of plantar sensations occurs in a range of conditions, leading to mobility impairment and inflammation
- We want to help patients avoid these problems by substituting plantar sensation with a haptic system

Collaborators Arun Jayaraman, P.T., Ph.D. Shirley Ryan AbilityLab

Flavin et al. Unpublished.


Can sensory substitution improve balance without vision?

Distribution of plantar pressure projects onto haptic device wirelessly, in real-time

- Insole-based pressure array collects pressure distribution and transmits to the haptic device
- The haptic device is located on part of the body where the patient can still feel, and they receive the missing sensation as vibration

Can sensory substitution improve balance without vision?

- **Exploratory results show** interventional effect 35 30 <u>ග</u> 25 time 20 Balance 15 10 5 Without With feedback feedback
- Insole-based pressure array collects pressure distribution and transmits to the haptic device
- The haptic device is located on part of the body where the patient can still feel, and they receive the missing sensation as vibration

Flavin Neuromachines Lab

Graduate students

Aaron Huang Dulani Wijayarathne Fengyuan Shen Timothy Weigman Matt Chung

Undergraduate students

Amogh Kashyap Andrew Liu Chinmay Bandapalli Nicholas Candello Sarvesh Senthilkumar Joyce Yang Sam Allahverdi Ethan Huang

https://flavinlab.io

Flavin Neuromachines Lab at Georgia Tech

National Institutes of Health